AQA

A-Level

Mathematics

MM05 Mechanics 5
Final Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Q	Solution	Mark	Total	Comment
1 (a)	$\begin{aligned} \text { Period } & =2 \pi \sqrt{\frac{2.45}{9.8}} \\ & =\pi \\ & =3.14 \mathrm{~s} \end{aligned}$	M1 A1		M1: Uses formula with correct length. A1: Correct period.
1 (b)	$\begin{aligned} \text { Average Speed } & =\frac{2 \times 2 \times 2.45 \times \frac{\pi}{10}}{\pi} \\ & =0.98 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 A1	3	M1: Correct distance found. A1: Correct expression for average speed. A1: Correct average speed.
1 (c)	$\begin{aligned} & \theta=\frac{\pi}{10} \cos (2 t) \\ & v=-\frac{2.45 \pi}{5} \sin (2 t) \\ & 1.2=\frac{2.45 \pi}{5} \sin (2 t) \end{aligned}$	M1 A1 dM1		M1: Correct expression for θ. A1: Correct expression for velocity. dM 1 : Forming equation to find t.
	$\begin{aligned} & t=\frac{1}{2} \sin ^{-1}\left(\frac{5 \times 1.2}{2.45 \pi}\right)=0.4469 \ldots \\ & \theta=0.197 \end{aligned}$ OR	A1 A1	5	A1: Correct time. A1: Correct θ.
	$\begin{aligned} & \frac{1}{2} m \times 1.2^{2}=m \times 9.8 \times 2.45\left(\cos \theta-\cos \left(\frac{\pi}{10}\right)\right) \\ & \cos \theta=\frac{0.72}{24.01}+\cos \left(\frac{\pi}{10}\right) \end{aligned}$	(M1) (A1) (A1) (dM1)		M1: Energy equation with two terms correct. A1: Correct terms but allow sign errors. A1: Correct equation. dM 1 : Solving for θ.
	$\theta=0.195$ OR	(A1)	(5)	A1: Correct value of θ.
	$\begin{aligned} 1.2^{2} & =2^{2}\left(\left(\frac{2.45 \pi}{10}\right)^{2}-(2.45 \theta)^{2}\right) \\ \theta & =\frac{1}{2.45} \sqrt{\left(\frac{2.45 \pi}{10}\right)^{2}-\left(\frac{1.2}{2}\right)^{2}} \\ & =0.197 \end{aligned}$	(M1) (A1) (A1) (dM1) (A1)	(5)	M1: Use of $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with consistent terms. A1: Correct terms but possible sign errors. A1: Correct terms. dM 1 : Solving for θ. A1: Correct value of θ.
	Total		10	

Q	Solution	Mark	Total	Comment
2 (a)	$\begin{aligned} & T_{1}=0.4 g+T_{2} \\ & \frac{49}{0.5}(d-0.5)=0.4 g+\frac{49}{0.5}(2-d-0.5) \\ & 98 d-49=3.92+147-98 d \\ & 196 d=199.92 \\ & d=1.02 \end{aligned}$	M1 A1 dM1 A1	4	M1: Three force equation with at least two terms correct. A1: Correct equation. dM 1 : Solving for d. A1: Correct d.
2 (b)	$\begin{aligned} 0.4 \frac{d^{2} x}{d t^{2}}= & T_{2}+0.4 g-T_{1} \\ = & \frac{49}{0.5}(2-1.02-x-0.5)+ \\ & 0.4 \times 9.8-\frac{49}{0.5}(x+1.02-0.5) \\ = & 47.04-98 x+3.92-98 x \\ & -50.96 \\ = & -196 x \end{aligned}$	M1A1 A1		M1: Equation of motion with at least two terms correct. A1: Correct terms but possible sign errors. A1: Correct equation.
	$\begin{aligned} \frac{d^{2} x}{d t^{2}} & =-490 x \\ \text { Period } & =\frac{2 \pi}{\sqrt{490}}=\frac{\pi \sqrt{10}}{35} \end{aligned}$	A1 A1	5	A1: Correct simplified differential equation. A1: Correct period from correct working.
2 (c) (i)	$v_{\max }=\sqrt{490} \times 0.05=\frac{7 \sqrt{10}}{20}=1.11 \mathrm{~m} \mathrm{~s}^{-1}$	M1A1	2	M1: Use of $a \omega$. A1: Correct max speed.
2 (c) (ii)	$\begin{aligned} & v^{2}=490\left(0.05^{2}-0.025^{2}\right)=\frac{147}{160} \\ & =0.91875 \\ & v=\sqrt{0.91875}=0.959 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1A1 A1	3	M1: Use of $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with correct ω. A1: Correct equation. A1: Correct speed.
	Tota		14	

Q	Solution	Mark	Total	Comment
4 (a)	$1=\sin 2 t$	M1		M1: Using $r=1$ to form an equation.
	$t=\frac{\pi}{4}+n \pi$	A1		A1: Finding t.
	$\dot{r}=2 \cos 2 t$	B1		B1: Correct $\dot{\theta}$.
	$\dot{\theta}=2$			
	$\ddot{\theta}=0$			
	$r \ddot{\theta}+2 \dot{r} \dot{\theta}=8 \cos 2 t$	M1		M1: Expression transverse component.
	$\cos \left(\frac{\pi}{2}+2 n \pi\right)=0$	A1	5	A1: Obtaining zero from correct working.
	OR			
	$1=\sin \theta$	(M1)		M1: Using $r=1$ to form an equation.
	$\cos \theta=0$	(A1)		A1: Finding $\cos \theta$.
	$\dot{r}=2 \cos \theta$			
	$\dot{\theta}=2$	(B1)		B1: Correct $\dot{\theta}$.
	$\ddot{\theta}=0$			
	$r \ddot{\theta}+2 \dot{r} \dot{\theta}=8 \cos \theta=0$	(M1) (A1)	(5)	
			(5)	A1: Obtaining zero from correct working.
4 (b)	$\ddot{r}=-4 \sin 2 t$	M1		M1: Finding radial component.
	$\begin{aligned} \ddot{r}-r \dot{\theta}^{2} & =-4 \sin 2 t-4 \sin 2 t \\ & =-8 \sin 2 t \end{aligned}$	A1		A1: Correct radial component.
	$0=-8 \sin 2 t$	M1		M1: Forming equation to find t.
	$t=0+\frac{n \pi}{2}$	A1	4	A1: Correct time(s).
4 (c)	$\begin{aligned} & r \dot{\theta}=2 \sin 2 t \\ & \sin (n \pi)=0 \end{aligned}$	M1		M1: Finding transverse component of the velocity.
	$r \dot{\theta}=0$	A1	2	A1: Correct conclusion from correct working.

